商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:
(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
(本题6分)如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。
理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(__________________________)
∴∠2 =∠CGD(等量代换)
∴CE∥BF(_______________________________)
∴∠=∠BFD(__________________________)
又∵∠B =∠C(已知)
∴∠BFD =∠B()
∴AB∥CD(________________________________)
(本题6分)如图:直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,
∠AED=48°,求∠BDF的度数。
如图,平面直角坐标系中,点B的坐标为(1,2),过点B作轴的垂线,垂足为A,连结OB,将△OAB沿OB折叠,使点A落在点A′处,A′B与
轴交于点F.
(1)求证:OF=BF;
(2)求BF的长;
(3)求过点A′的双曲线的解析式。
如图,一次函数的图像与反比例函数
的图像交于
两点。
求:(1)的值;
(2)求一次函数的解析式;
(3)若直线AB交轴于点C,求△OBC的面积.
.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.