如图,已知,
,试说明
的理由.
已知,当m为何值时,是二次函数?
用配方法解方程:
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
已知:如图,抛物线与
轴交于点
,点
,与直线
相交于点
,点
,直线
与
轴交于点
.
(1)求
的面积.
(2)若点
在线段
上以每秒1个单位长度的速度从
向
运动(不与
重合),同时,点
在射线
上以每秒2个单位长度的速度从
向
运动.设运动时间为
秒,请写出
的面积
与
的函数关系式,并求出点
运动多少时间时,
的面积最大,最大面积是多少?
已知是
的一个内角,抛物线
的顶点在
轴上.
(1)求
的度数;
(2) 若
求:AB边的长.