游客
题文

已知:抛物线y=x+bx+c的顶点D在直线y=-4x上,且与x轴的交点A(-1,0),B,交y轴于点C,顶点为D. 

(1) 求抛物线的解析式及顶点D的坐标. 
(2)试判断点C与以BD为直径的⊙M的位置关系.
(3)若点P的坐标是(a,0),是否存在a,使得直线PC是⊙M的切线?若存在,求出a的值,若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

在平面直角坐标系中,点O为原点,抛物线y=ax2+bx(其中-1≤a<0)经过A(3,n),AB⊥y轴于B,抛物线交直线AB于M.
(1)若n=1,AB=3BM,求抛物线所对应的函数关系式;
(2)若n=a+b,抛物线与x轴另一个异于原点的交点为C,过点A作AP∥OM交直线MC于点P,当△OPM的面积最大时,求sin∠MOP的值.

如图,四边形ABCD是⊙O的内接四边形,,点E、F分别是弦AD、DC上的点.

(1)若∠ABE=∠CBF,BE=BF.求证:BD是⊙O的直径.
(2)若,∠D=2∠EBF=90°,AE=ED=2.求DF的长.

已知点A(m,p),B(n,q)(m<n<0)在动点C(,a)(k≠0)所形成的曲线上.若p+q=-b-2,.试比较p和q的大小,并说明理由.

定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”.如果关于x的一元二次方程x2-4x+5m=mx+5与x2+x+m-1=0互为“友好方程”,求m的值.

如图,在正方形ABCD中,点M是BC边上的任意一点,连接AM,并将线段AM绕点M顺时针旋转90°得到线段MN,过N作NP⊥C D于点P,连接BP.求证:四边形BMNP是平行四边形

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号