游客
题文

已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)
(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;
(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;
(3)如图③,分别在AD、BC上取点F、C’,使得∠APF=∠BPC’,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△沿翻折得到△,连接,取的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 圆内接四边形的性质
登录免费查看答案和解析
相关试题

解方程:
(1);(2);(3)x2-5x-6=0.

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,
连接AM、CM.其中BN=BM,∠MBN=60°,连接EN

(1)证明:△ABM≌△EBN
(2)当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为时,求正方形的边长.

如图,在四边形中,中点,
中点,且,求梯形的面积.

如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.

(1)求证:PE="PD" ;
(2)连接DE,试判断∠PED的度数,并证明你的结论.

如图,菱形ABCD,对角线AC、BD交于点O,DE//AC,CE//BD,求证:OE=BC

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号