游客
题文

已知函数处取得极值,且
(1) 求函数的解析式;   (2) 若在区间上单调递增,求的取值范围

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,正三棱锥 O - A B C 的三条侧棱 O A , O B , O C 两两垂直,且长度均为2. E , F 分别是 A B , A C 的中点, H E F 的中点,过 E F 作平面与侧棱 O A , O B , O C 或其延长线分别相交于 A 1 , B 1 , C 1 ,已知 O A 1 = 3 2
image.png

(1)求证: B 1 C 1 平面 O A H
(2)求二面角 O - A 1 B 1 - C 1 的大小。

数列 { a n } 为等差数列, a n 为正整数,其前 n 项和为 S n ,数列 { b n } 为等比数列,且 a 1 = 3 , b 1 = 1 ,数列 { b a n } 是公比为64的等比数列, b 2 S 2 = 64
(1)求 a n , b n

(2)求证 1 S 1 + 1 S 2 + + 1 S n < 3 4 .

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令 ξ i ( i = 1 , 2 ) 表示方案 i 实施两年后柑桔产量达到灾前产量的倍数。
(1)写出 ξ 1 , ξ 2 的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

已知数列 { a n } { b n } 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) 其中 λ 为实数, n 为正整数。
(Ⅰ)对任意实数 λ ,证明数列 { a n } 不是等比数列;
(Ⅱ)试判断数列 { b n } 是否为等比数列,并证明你的结论;
(Ⅲ)设 0 < a < b S n 为数列 { b n } 的前 n 项和。是否存在实数 λ ,使得对任意正整数 n ,都有 a < S n < b ?若存在,求 λ 的取值范围;若不存在,说明理由。

水库的蓄水量随时间而变化,现用 t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V t = - t 2 + 14 t - 40 e 1 t + 50 , 0 < t 10 4 t - 10 3 t - 41 + 50 , 10 < t 12
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期,以 i - 1 < t , t 表示第1月份( i =1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取 e =2.7计算)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号