已知函数在
处取得极值,且
(1) 求函数的解析式; (2) 若在区间上单调递增,求
的取值范围
如图,正三棱锥
的三条侧棱
两两垂直,且长度均为2.
分别是
的中点,
是
的中点,过
作平面与侧棱
或其延长线分别相交于
,已知
。
(1)求证:
平面
;
(2)求二面角
的大小。
数列
为等差数列,
为正整数,其前
项和为
,数列
为等比数列,且
,数列
是公比为64的等比数列,
。
(1)求
;
(2)求证 .
某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令
表示方案
实施两年后柑桔产量达到灾前产量的倍数。
(1)写出
的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?
已知数列
和
满足:
其中
为实数,
为正整数。
(Ⅰ)对任意实数
,证明数列
不是等比数列;
(Ⅱ)试判断数列
是否为等比数列,并证明你的结论;
(Ⅲ)设
,
为数列
的前
项和。是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由。
水库的蓄水量随时间而变化,现用
表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
=
。
(Ⅰ)该水库的蓄求量小于50的时期称为枯水期,以
,
表示第1月份(
=1,2,…,12),同一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取
=2.7计算)