游客
题文

已知椭圆C:(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知a>0,求证: a-2.

已知函数f(x)=x3.
(1)判断f(x)的奇偶性;(2)求证:f(x)>0.

已知Sn为正项数列{an}的前n项和,且满足Snan(n
N),求出a1a2a3a4,猜想{an}的通项公式并给出证明

先阅读下列不等式的证法,再解决后面的问题:
已知a1a2∈R,a1a2=1,求证:.
证明:构造函数f(x)=(xa1)2+(xa2)2f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8()≤0,∴.
(1)已知a1a2,…,an∈R,a1a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

V为全体平面向量构成的集合,若映射f
V→R满足:
对任意向量a=(x1y1)∈Vb=(x2y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.
现给出如下映射:
f1V→R,f1(m)=xym=(xy)∈V;
f2V→R,f2(m)=x2ym=(xy)∈V;
f3V→R,f3(m)=xy+1,m=(xy)∈V.
分析映射①②③是否具有性质p.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号