游客
题文

如图1,将由5个边长为1的小正方形组成的十字形纸板沿虚线剪拼成一个大正方形,需剪4
刀。

(1) 思考发现:大正方形的面积等于5个小正方形的面积和,大正方形的边长等于_______。
(2) 实践操作:如图2,将网格中5个边长为1的小正方形组成的图形纸板剪拼成一个大正方形,要求剪
两刀,画出剪拼的痕迹。
(3) 智力开发:将网格中的5个边长为1的正方形组成的十字形纸板,要求只剪2刀也拼成一个大正方形。
在图中用虚线画出剪拼的痕迹。

科目 数学   题型 解答题   难度 较易
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(本小题6分) 如图,OA、OC是⊙O的半径,OA=1,且OC⊥OA,点D在弧AC上,弧AD=2弧CD,在OC求一点P,使PA+PD最小,并求这个最小值.

(本小题6分) 如图,在梯形中,,求的长.

(本小题7分)已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.

(1)求证:AC⊥OD;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.

(本小题6分)二次函数的图象经过点(1,2)和(0,-1)且对称轴为x=2,求二次函数解析式.

(14分)已知抛物线yax2bxc(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线lx轴平行,O为坐标原点,PQ为抛物线yax2bxc(a≠0)上的两动点.

(1) 求抛物线的解析式;
(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3) 设线段PQ=9,GPQ的中点,求点G到直线l距离的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号