如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.
(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;
(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:
①线段AD与EC的长度相等吗?请说明理由.
②锐角的度数是否改变?若不变,请求出
的度数;若改变,请说明理由.
(注:等边三角形的三条边都相等,三个角都是60°)
已知二次函数y=x2+bx+c的图象过(2,-1)和(4,3)两点,求y=x2+bx+c的表达式
如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE
小明四等分弧AB,他的作法如下:
(1)连接AB(如图);
(2)作AB的垂直平分线CD交弧AB于点M,交AB于点T;
(3)分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。你认为小明的作法是否正确: 理由是
如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是
且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.