已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边长作正方形PQMN,使点M落在反比例函数的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点
在第二象限;
(1)如图所示,点P坐标为(1,0),图中已画出一个符合条件的正方形PQMN,请你在图中画出符合条件的另一个正方形,并写出点
的坐标;
(2)请你通过改变P点的坐标,对直线M的解析式y﹦kx+b进行探究:
①k= ;
②若点P的坐标为(m,0),则b= ;
(3)依据(2)的规律,如果点P的坐标为(8,0),请你求出点和点M的坐标.
如图,已知△ABC中,AB=AC,AB边上的垂直平分线DE交BA于点D,交AC于点E.
(1)若AB=8cm,△BCE的周长是14cm,求BC的长;
(2)若∠ABE:∠EBC=2:1,求∠A的度数.
计算:
(1)(2)
实践与探索:
㈠小明在玩积木游戏时,把三个正方形积木摆成一定的形状,正视图如图①,
问题(2):若P的面积为36cm2,Q的面积为64 cm2,同时M的面积为100 cm2,则△DEF为_______三角形。
㈡图形变化:Ⅰ.如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,你能找出这三个半圆的面积之间有什么关系吗?请说明理由。
Ⅱ.如图③,如果直角三角形两直角边的长分别为3和4,以直角三角形的三边为直径作半圆,你能利用上面中的结论求出阴影部分的面积吗?
如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA。
(1)试求∠DAE的度数。
(2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?试说明理由。
如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米。
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向也滑动了4米吗?