我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
(Ⅰ)频率分布表
分组 |
频数 |
频率 |
[40,50) |
2 |
|
[50,60) |
3 |
|
[60,70) |
10 |
|
[70,80) |
15 |
|
[80,90) |
12 |
|
[90,100] |
8 |
|
合计 |
50 |
|
(Ⅰ)频率分布直方图为
如图所示,在直四棱柱中,底面
是矩形,
,
,
,
是侧棱
的中点.
(1)求证:平面
;
(2)求二面角的大小.
已知焦点在轴上的椭圆
过点
,且离心率为
,
为椭圆
的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线
与椭圆
交于
,
两点.
(ⅰ)若直线垂直于
轴,求
的大小;
(ⅱ)若直线与
轴不垂直,是否存在直线
使得
为等腰三角形?如果存在,求出直线
的方程;如果不存在,请说明理由.
已知函数,其中
是常数.
(1)当时,求曲线
在点
处的切线方程;
(2)若存在实数,使得关于
的方程
在
上有两个不相等的实数根,求
的取值范围.
在中,角
,
,
所对的边分别为
,
,
,
,
.
(1)求及
的值;
(2)若,求
的面积.
某公园准备建一个摩天轮,摩天轮的外围是一个周长为米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为
元/根,且当两相邻的座位之间的圆弧长为
米时,相邻两座位之间的钢管和其中一个座位的总费用为
元.假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为
元.
(1)试写出关于
的函数关系式,并写出定义域;
(2)当米时,试确定座位的个数,使得总造价最低?