我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:
[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.
(Ⅰ)完成样本的频率分布表;画出频率分布直方图.
(Ⅱ)估计成绩在85分以下的学生比例;
(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
(Ⅰ)频率分布表
分组 |
频数 |
频率 |
[40,50) |
2 |
|
[50,60) |
3 |
|
[60,70) |
10 |
|
[70,80) |
15 |
|
[80,90) |
12 |
|
[90,100] |
8 |
|
合计 |
50 |
|
(Ⅰ)频率分布直方图为
(本小题满分10分)选修4-4:坐标系与参数方程
曲线的参数方程为
,
是曲线
上的动点,且
是线段
的中点,
点的轨迹为曲线
,直线l的极坐标方程为
,直线l与曲线
交于
,
两点。
(Ⅰ)求曲线的普通方程;
(Ⅱ)求线段的长。
(本小题满分10分)选修4-1 :几何证明选讲
直线交圆
于
两点,
是直径,
平分
,交圆
于点
,过
作
于
。
(Ⅰ)求证:是圆
的切线;
(Ⅱ)若,求
的面积。
(本小题满分12分)已知函数,
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若对任意的,恒有
成立,求
的取值范围;
(Ⅲ)证明:(
).
(本小题满分12分)已知椭圆C:(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为
b.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.
(本小题满分12分)如图,四棱锥,侧面
是边长为
的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
(Ⅰ)求证:;
(Ⅱ)求点到平面
的距离.