一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率;
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为.求n的值.
数学老师到菜市场买菜,发现若把10千克的菜放在某秤上,秤的指针盘上的指针转了180°,于是老师在学完一元一次方程和角的相关知识后给学生提出了两个问题:
(1)老师把6千克的菜放在该秤上,指针转过多少度?
(2)若刘大妈第一次把若干千克的菜放在秤上,通过指针盘度数发现与自己所需数量还差一些,于是再放了1千克的菜上去,发现前、后两次指针转过的角度恰好互余.求刘大妈第一次放多少千克菜在秤盘上?
如图,AB与CD相交于O点,∠1=50°,则∠2=.
如图,直线AB与CD相交于O,OE平分∠AOB,OF平分∠COD.
(1)图中与∠COA互补的角是;(把符合条件的所有角都写出来)
(2)如果∠AOC=35°,求∠EOF的度数.
以下两题请选择一题解答,若两题都答,只把第1题的分数记入学分.
①如图1,已知射线OC在平角∠AOB的内部,且∠AOC>∠BOC,OD平分∠AOC,OE平分∠BOC.
(1)比较∠COD与∠COE的大小,并说明理由.
(2)你能求出∠DOE的大小吗?如果能,请求出它的度数,若不能,说明理由.
(3)若∠AOB=a,你能用a表示∠DOE的度数吗?请说明理由.
②如图2,∠AOC与∠BOD都是直角,∠BOC=50°.
(1)求∠AOB和∠DOC的度数,∠AOB和∠DOC有何大小关系?
(2)若∠BOC的具体度数不稳定,其他条件不变,这种关系仍然成立吗?说明理由.
(3)试猜想∠AOD与∠COB在数量上是相等、互余,还是互补关系?你能用推理的方法说明你的猜想是否合理吗?
(4)当∠BOD绕点O旋转到图3位置时,你原来的猜想还成立吗?说明理由.
如图,OA⊥OC.OB⊥OD,∠1=50°,求∠2的度数.