如图所示,二次函数(
)的图像与
轴分别交于
(
,
)、
(
,
)两点,且与
轴交于点
;
(1)求该拋物线的解析式,并判断的形状;
(2)在轴上方的拋物线上有一点
,且以
、
、
、
四点为顶点的四边形是等腰梯形,请直接写
出点的坐标;
(3)在此拋物线上是否存在点P,使得以、
、
、
四点为顶点的四边形是直角梯形?若存在,求
(4)出点的坐标;若不存在,说明理由.
请阅读下列材料:
问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:
路线1:高线AB+底面直径BC,如图(1)所示.
路线2:侧面展开图中的线段AC,如图(2)所示.
设路线1的长度为l1,则l1=AB+BC=2+8=10;
设路线2的长度为l2,则l2==
=
;
∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0
∴即l1<l2
所以选择路线1较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)
①此时,路线1:l1=.路线2:l2=.
②所以选择哪条路线较短?试说明理由.
(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.
如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.
(1)若AB=10,BC=6,求△BCD的周长;
(2)若AD=BC,试求∠A的度数.
某校在2014-2015学年八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.
请根据上述信息解答下列问题:
(1)该班参与问卷调查的人数有人;补全条形统计图;
(2)求出C类人数占总调查人数的百分比及扇形统计图中A类所对应扇形圆心角的度数.
如图,点C、B、E、F在同一直线上,CE=BF,AC∥DF,AC=DF.求证:△ABC≌△DEF.
先化简,再求值:+(2
﹣14
y+8x
)÷(﹣2x),其中x=﹣
,y=5.