现有4个同学去看电影,他们坐在了同一排,且一排有6个座位.问:
(1)所有可能的坐法有多少种?
(2)此4人中甲,乙两人相邻的坐法有多少种?
(3)所有空位不相邻的坐法有多少种?(结果均用数字作答)
已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.
(1)求a及k的值;
(2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn.
已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22.
(1)求Sn;
(2)这个数列的前多少项的和最大,并求出这个最大值.
已知等差数列{an}的前n项和为Sn,n∈N*,且满足a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)若bn=,则数列{bn}的最小项是第几项,并求该项的值.
已知数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1=.
(1)求证:是等差数列;
(2)求an的表达式.
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足a2·a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)设由bn=(c≠0)构成的新数列为{bn},求证:当且仅当c=-
时,数列{bn}是等差数列.