在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北30°东,俯角为30°的B处,到11时10分又测得该船在岛北60°西、俯角为60°的C处。
(1)求船的航行速度是每小时多少千米;
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
已知函数.
(Ⅰ)试求的值域;
(Ⅱ)设若对
,
,恒
成立,试求实数
的取值范围
(本小题满分12分)
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
(1)求实数的值;
(2)求在区间
上的最大值;
(3)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
(本小题满分12分)已知等差数列为递增数列,且
是方程
的两根,数列
的前
项和
;
(1)求数列和
的通项公式;
(2)若,
为数列
的前n项和,证明:
已知是一个等差数列,且
,
。
(1)求的通项
;
(2)求的前
项和
的最大值.
(本小题满分12分)
已知函数.
(1)求的单调递增区间;
(2)求的最大值及取得最大值时相应的
的值.