如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G。
(1)求证:AF⊥BE;
(2)试探究线段AO、BO、GO的长度之间的数量关系;
(3)若GO:CF=4:5,试确定E点的位置。
如图,抛物线 与 轴交于点 和点 (点 在原点的左侧,点 在原点的右侧),与 轴交于点 , .
(1)求该抛物线的函数解析式.
(2)如图1,连接 ,点 是直线 上方抛物线上的点,连接 , . 交 于点 ,当 时,求点 的坐标.
(3)如图2,点 的坐标为 ,点 是抛物线上的点,连接 , , 形成的 中,是否存在点 ,使 或 等于 ?若存在,请直接写出符合条件的点 的坐标;若不存在,请说明理由.
菱形 中、 ,点 为射线 上的动点,作射线 与直线 相交于点 ,将射线 绕点 逆时针旋转 ,得到射线 ,射线 与直线 相交于点 .
(1)如图①,点 与点 重合时,点 , 分别在线段 , 上,请直接写出 , , 三条段段之间的数量关系;
(2)如图②,点 在 的延长线上,且 , , 分别在线段 的延长线和线段 的延长线上,请写出 , , 三条线段之间的数量关系,并说明理由;
(3)点 在线段 上,若 , ,当 时,请直接写出 的长.
如图,在 中, ,点 , 分别为 , 的中点,连接 ,作 与 相切于点 ,在 边上取一点 ,使 ,连接 .
(1)判断直线 与 的位置关系,并说明理由;
(2)当 , 时,求 的半径.
服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价 (元 件)与批发数量 (件 为正整数)之间所满足的函数关系如图所示.
(1)求 与 之间所满足的函数关系式,并写出 的取值范围;
(2)设服装厂所获利润为 (元 ,若 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?
如图为某景区五个景点 , , , , 的平面示意图, , 在 的正东方向, 在 的正北方向, , 在 的北偏西 方向上, 在 的西北方向上, , 相距 , 在 的中点处.
(1)求景点 , 之间的距离;
(2)求景点 , 之间的距离.(结果保留根号)