如图,正四棱柱中,底面边长为2,侧棱长为3,E为BC的中点,F、G分别为
、
上的点,且CF=2GD=2.求:
(1)到面EFG的距离;
(2)DA与面EFG所成的角的正弦值;
(3)在直线上是否存在点P,使得DP//面EFG?,若存在,找出点P的位置,若不存在,试说明理由。
已知数列满足
(
为常数,
)
(1)当时,求
;
(2)当时,求
的值;
(3)问:使恒成立的常数
是否存在?并证明你的结论.
已知椭圆的右焦点
,长轴的左、右端点分别为
,且
.
(1)求椭圆的方程;
(2)过焦点斜率为
(
)的直线
交椭圆
于
两点,弦
的垂直平分线与
轴相交于
点. 试问椭圆
上是否存在点
使得四边形
为菱形?若存在,求
的值;若不存在,请说明理由.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧
、弧
以及两条线段
和
围成的封闭图形.花坛设计周长为30米,其中大圆弧
所在圆的半径为10米.设小圆弧
所在圆的半径为
米(
),圆心角为
弧度.
(1)求关于
的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当
为何值时,
取得最大值?
已知几何体由正方体和直三棱柱组成,其三视图和直观图(单位:cm)如图所示.设两条异面直线和
所成的角为
,求
的值.
设各项都是正整数的无穷数列满足:对任意
,有
.记
.
(1)若数列是首项
,公比
的等比数列,求数列
的通项公式;
(2)若,证明:
;
(3)若数列的首项
,
,
是公差为1的等差数列.记
,
,问:使
成立的最小正整数
是否存在?并说明理由.