已知13 =" 1" =×12×22, 13+23=9=
×22×32,13 + 23 + 33 =" 36" =
×32×42, …,按照这个规律完成下列问题:
(1)13+23+33+43+53=________=× ( )2 × ( )2
(2)猜想:13+23+33+…+n3=___________
(3)利用(2)中的结论计算:(写出计算过程)
113+123 + 313+143 + 153+163 + ……+393+403.
如图所示,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,求△DBE的周长.
如图,OC是∠AOB的角平分线,P是OC上一点,PE⊥OA交OA于E,PF⊥OB 交OB于F,Q是OC上的另一点,连接QE,QF.求证:QE=QF.
如图,已知CD⊥AB于D,BE⊥AC于E,CD交BE于点O.
①若OC=OB,求证:点O在∠BAC的平分线上.(提示:连接AO)
②若点O在∠BAC的平分线上,求证:OC=OB.
如图,在△ABC中,AD平分∠BAC,AB=6,AC=4,△ABD的面积等于9.
求:△ADC的面积.
如图,已知∠ADC=∠ABC,DE、BF分别平分∠ADC和∠ABC,且∠1=∠2,试说明AB∥DC的理由.