为实现区域教育均衡发展,我市计划对某县、
两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所
类学校和两所
类学校共需资金230万元;改造两所
类学校和一所
类学校共需资金205万元.
(1)改造一所类学校和一所
类学校所需的资金分别是多少万元?
(2)若该县的类学校不超过5所,则
类学校至少有多少所?
(3)我市计划今年对该县、
两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到
、
两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
画图:试画出下列正多边形的所有对称轴,并完成表格,
![]() |
正多边形的边数 |
3 |
4 |
5 |
6 |
7 |
…… |
对称轴的条数 |
…… |
根据上表,猜想正n边形有_________条对称轴。
如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价
(元)符合一次函数
,且
时,
;
时,
.(1)求一次函数
的表达式;
(2)若该商场获得利润为元,试写出利润
与销售单价
之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
如图,在中,
,将
绕点
按逆时针方向旋转至
,
点的坐标为
.(1)求
点的坐标;
(2)求过
,
三点的抛物线
的解析式;
改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x年的国民生产总值为y亿元,y与x之间的关系是该镇那一年的国民生产总值可在1995年的基础上翻两番(即达到1995年的年国民生产总值的4倍)?