在云南大理坐落着美丽的大理三塔.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量三塔中一塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.
(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点,用测角仪测出看塔顶
的仰角
,在
点和塔之间选择一点
,测出看塔顶
的仰角
,然后用皮尺量出
.
两点的距离为
m,自身的高度为
m.请你利用上述数据帮助小华计算出塔的高度(
,结果保留整数).
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影的长为
m(如图2),你能否利用这一数据设计一个测量方案?如果能,
请回答下列问题:
①在你设计的测量方案中,选用的测量工具是: ;
②要计算出塔的高,你还需要测量哪些数据? .
如图,在平面直角坐标系中,二次函数
的图象与一次函数
的图象交于A、B两点,点A在x轴上,点B的纵坐标为
.点P是二次函数图象上A、B两点之间的一个动点(不与点A、B重合),设点P的横坐标为m,过点P作x轴的垂线交AB于点C,作PD⊥AB于点D.
(1)求b及sin∠ACP的值;
(2)用含m的代数式表示线段PD的长;
(3)连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为.如果存在,直接写出m的值;如果不存在,请说明理由.
如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.
(1)求证:△OAE≌△OBG;
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;
(3)试求:的值(结果保留根号).
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果精确到个位,参考数据:≈1.414,
≈1.732,
≈2.236)
已知:如图,AB是⊙O的直径,AC是弦.过点A作∠BAC的角平分线,交⊙O于点D,过点D作AC的垂线,交AC的延长线于点E.
(1)求证:直线ED是⊙O的切线;
(2)连接EO,交AD于点F,若5AC=3AB,求的值.