2010年上海世博会举办时间为2010年5月1日--10月31日.此次世博会福建馆招募了60名志愿者,某高校有13人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所学院(这5所学院编号为1、2、3、4、5号),人员分布如图所示. 若从这13名入选者中随机抽出3人.
(1)求这3人所在学院的编号正好成等比数列的概率;
(2)求这3人中中英文讲解员人数的分布列及数学期望.
双曲线的中心为原点,焦点在
轴上,两条渐近线分别为
,经过右焦点
垂直于
的直线分别交
于
两点.已知
成等差数列,且
与
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设
被双曲线所截
得的线段的长为4,求双曲线的方程.
如图,在四棱锥中,底面
是矩形.
已知
.
(Ⅰ)证明平面
;
(Ⅱ)求异面直线与
所成的角的大小;
(Ⅲ)求二面角的大小.
袋中有同样的球5个,其中3个红色, 2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量
为此时已摸球的次数。
(1)求随机变量的概率分布列;
(2) 求随机变量的数学期望与方差。
(本题满分12分)在平面直角坐标系下,已知
,
,
,
(1)求的表达式和最小正周期;
(2)当时,求
的值域.
(本小题满分14分)
设函数(
).
(1)当时,求
的最小值;
(2)若,将
的最小值记为
,求
的表达式;
(3)当时,关于
的方程
有且仅有一个实根,求实数
的取值范围.