如图5所示为氢原子能级示意图,现有每个电子的动能都是Ee=12.89eV的电子束与处在基态的氢原子束射入同一区域,使电子与氢原子发生正碰。已知碰撞前一个电子和一个氢原子的总动量恰好为零。碰撞后氢原子受激发,跃迁到n=4的能级。求碰撞后电子和受激氢原子的总动能。已知电子的质量me与氢原子的质量mH之比为。
分)如图所示,空间存在着强度E=方向竖直向上的匀强电场,在电场内一长为
的绝缘细线,一端固定在O点,一端拴着质量m、电荷量q的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.求:
(1)小球运动最高点时的速度;
(2)细线能承受的最大拉力;
(3)从断线开始计时,在t=时刻小球与O点的距离。
如图所示,长为L (L=ab=dc),高为L(L=bc=ad)的矩形区域abcd内存在着匀强电场。电量为q、质量为m、初速度为的带电粒子从a点沿ab方向进入电场,不计粒子重力。求:
(1)若粒子从c点离开电场,求电场强度的大小;
(2)若粒子从bc边某处离开电场时速度为,求电场强度的大小。
如图所示,竖直面内有一绝缘轨道,AB部分是光滑的四分之一圆弧,圆弧半径R=0.5m,B处切线水平,BC部分为水平粗糙直轨道。有一个带负电的小滑块(可视为质点)从A点由静止开始下滑,运动到直轨道上的P处刚好停住。小滑块的质量m=1kg,带电量为保持不变,滑块小轨道BC部分间的动摩擦因数为μ=0.2,整个空间存在水平向右的匀强电场,电场强度大小为E=4.0×102N/C.(g=10m/s2)
(1)求滑块到达B点瞬间的速度大小
(2)求滑块到达B点瞬间对轨道的压力大小。
(3)求BP间的距离,
分)如图所示,用长为的绝缘细线悬挂一带电小球,小球质量为m。现加一水平向右、场强为E的匀强电场,平衡时小球静止于A点,细线与竖直方向成θ角。
(1)求小球所带电荷量的大小;
(2)若将细线剪断,小球将在时间t内由A点运动到电场中的P点(图中未画出),求A、P两点间的距离;
(3)求A、P两点间电势差的
如图所示,长L=1.2 m、质量M=3 kg的木板静止放在倾角为37°的光滑斜面上,质量m=1 kg、带电荷量q=+2.5×10-4 C的物块放在木板的上端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向垂直斜面向下、场强E=4.0×104 N/C的匀强电场。现对木板施加一平行于斜面向上的拉力F=10.8 N。取g=10 m/s2,斜面足够长。求:
(1)物块经多长时间离开木板;
(2)物块离开木板时木板获得的动能;
(3)物块在木板上运动的过程中,由于摩擦而产生的内能。