如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB.
(1)(5分)求证:CG是⊙O的切线;
(2)(5分)若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.
弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:
x/kg |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
y/cm |
12 |
12.5 |
13 |
13.5 |
14 |
14.5 |
15 |
(1)请写出弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式.
(2)当挂重10千克时弹簧的总长是多少?(3)画出此函数图像。
下面的图象记录了某地一月份某天的温度随时间变化的情况,请你仔细观察图象回答下面的问题:
⑴ 20时的温度是℃,温度是0℃的时刻是时,最暖和的时刻
是时,温度在-3℃以下的持续时间为小时.
⑵ 你从图象中还能获取哪些信息(写出3~4条即可)?
如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,求鸡场的长y (m)与宽x (m)的函数关系式,并求自变量的取值范围。
已知两个变量x、y满足关系2x-3y+1=0,试问:①y是x的函数吗?②x是y的函数吗?若是,分别写出y与x的关系式,若不是,说明理由.
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?