游客
题文

平面上两条直线AB、CD相交于点O,且∠BOD=1500(如图),现按如下要求规定此平面上点的“距离坐标”:
(1)点O的“距离坐标”为(0,0);
(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);
(3)到直线AB、CD的距离分别为p、q(p>0,q>0)的点的“距离坐标”为(p,q)。
设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:
(1)画出图形(保留画图痕迹):
①满足m=1且n=0的点的集合;
②满足m=n的点的集合;
(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式。
(说明:图中OI长为一个单位长)

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

(年贵州省贵阳市)如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.

(1)求MP的值;
(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?
(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)

(年贵州省毕节)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.

(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.

(年贵州省贵阳市)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.

(1)四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)

(年云南省)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.

(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.

(年云南省曲靖市)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.

(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是,tanα=,求四边形OBEC的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号