游客
题文

如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2
(1)求抛物线的解析式.
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.
(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,抛物线 y = a x 2 3 2 x 2 ( a 0 ) 的图象与 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 B 点坐标为 ( 4 , 0 )

(1)求抛物线的解析式;

(2)试探究 ΔABC 的外接圆的圆心位置,并求出圆心坐标;

(3)若点 M 是线段 BC 下方的抛物线上一点,求 ΔMBC 的面积的最大值,并求出此时 M 点的坐标.

如图, ΔABC ΔADE 是有公共顶点的等腰直角三角形, BAC = DAE = 90 ° ,点 P 为射线 BD CE 的交点.

(1)求证: BD = CE

(2)若 AB = 2 AD = 1 ,把 ΔADE 绕点 A 旋转,当 EAC = 90 ° 时,求 PB 的长;

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为 x ( x 为正整数),每个月的销售利润为 y 元.

(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?

(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

如图,在 ΔABC 中, C = 90 ° ,点 O AC 上,以 OA 为半径的 O AB 于点 D BD 的垂直平分线交 BC 于点 E ,交 BD 于点 F ,连接 DE

(1)判断直线 DE O 的位置关系,并说明理由;

(2)若 AC = 6 BC = 8 OA = 2 ,求线段 DE 的长.

如图,在平面直角坐标系中,过点 A ( 2 , 0 ) 的直线 l y 轴交于点 B tan OAB = 1 2 ,直线 l 上的点 P 位于 y 轴左侧,且到 y 轴的距离为1.

(1)求直线 l 的表达式;

(2)若反比例函数 y = m x 的图象经过点 P ,求 m 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号