(本小题9分)某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛,下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量。
羊毛颜色 |
每匹需要 / kg |
供应量/ kg |
|
布料A |
布料B |
||
红 |
4 |
4 |
1400 |
绿 |
6 |
3 |
1800 |
黄 |
2 |
6 |
1800 |
已知生产每匹布料A、B的利润分别为120元、80元。那么如何安排生产才能够产生最大的利润?最大的利润是多少?
(本小题满分12分) 已知二次函数的图象经过原点,且
。
(1)求的表达式.
(2)设,当
时,
有最大值14,试求
的值.
(本小题满分12分)已知函数
(1)写出函数的最小正周期和对称轴;
(2)设,
的最小值是
,最大值是
,求实数
的值.
(本题满分12分)某民营企业生产A、B两种产品,根据市场调查和预测,A产品的利润y与投资额x成正比,其关系如图1所示;B产品的利润y与投资额x的算术平方根成正比,其关系如图2所示(利润与投资额的单位均为万元). (1)分别将A、B两种产品的利润表示为投资额的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:
x |
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
y |
… |
16 |
10 |
8.34 |
8.1 |
8.01 |
8 |
8.01 |
8.04 |
8.08 |
8.6 |
10 |
11.6 |
15.14 |
… |
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数
在区间上递增.当
时,
.
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
(本小题满分12分)如图,在平面直角坐标系中,以
轴为始边做两个锐角
,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为
.
(1)求的值; (2)求
的值.