(本小题满分12分)在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示). (Ⅰ)在三棱锥上标注出、点,并判别MN与平面AEF的位置关系,并给出证明;(Ⅱ)是线段上一点,且, 问是否存在点使得,若存在,求出的值;若不存在,请说明理由;(Ⅲ)求多面体E-AFNM的体积.
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。
如果直线l将圆平分,且不通过第四象限,求l的斜率的取值范围。
已知圆C的方程为x2+y2+(m-2)x+(m+1)y+m-2=0,根据下列条件确定实数m的取值,并写出相应的圆心坐标和半径。 ⑴圆的面积最小; ⑵圆心距离坐标原点最近。
已知直线l:kx-y-3k=0;圆M:x2+y2-8x-2y+9=0, (1)求证:直线l与圆M必相交; (2)当圆M截l所得弦最长时,求k的值。
已知曲线是与两个定点A(-4,0),B(2,0)距离比为2的点的轨迹,求此曲线的方程
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号