(本小题满分16分)
已知数列是各项均为正数的等差数列.
(1)若,且
,
,
成等比数列,求数列
的通项公式
;
(2)在(1)的条件下,数列的前
和为
,设
,若对任意的
,不等式
恒成立,求实数
的最小值;
(3)若数列中有两项可以表示为某个整数
的不同次幂,求证:数列
中存在无穷多项构成等比数列.
某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
(Ⅰ)求出表中、
、
、
的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(Ⅱ)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在分以上的人数;
(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.
公差不为零的等差数列{}中,
,又
成等比数列.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)设,求数列{
}的前n项和
.
在锐角中,
.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.
已知函数,其中
且
.
(I)求函数的单调区间;
(II)当时,若存在
,使
成立,求实数
的取值范围.
已知椭圆(
)右顶点与右焦点的距离为
,短轴长为
.
(I)求椭圆的方程;
(II)过左焦点的直线与椭圆分别交于
、
两点,若三角形
的面积为
,求直线
的方程.