某公司为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作。经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍。已知某公司现有员工50人,设抽调人到新生产线上工作。
(1)若分工前员工每月的人均产值为元,则分工后留在原生产线上工作的员工每月人均产值是 元,每月的总产值是 元;到新生产线上工作的员工每月人均产值是
元,每月的总产值是 元。
(2)分工后若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值,而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半。
问:抽调的人数应该在什么范围?
已知:如图,在△ABC中,AB=AC,∠BAC=,且60°<
<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—
.
(1)用含的代数式表示∠APC,得∠APC =______;
(2)求证:∠BAP=∠PCB;
(3)求∠PBC的度数.
(1)已知:如图1,在△ABC中,D、F分别是AB、CA上的两个定点,在BC上找一点E,使△DEF的周长最小,请作出相应图形并写出作法,
(2)已知:如图2,在△ABC中,若在上一题的条件改为D是AB上一定点,在BC、 CA、上分别找一点E、F使△DEF的周长最小,请作出相应图形并写出作法
(3)已知:如图3,在△ABC中,是否存在D、E、F分别在AB、BC、CA,且
△DEF的周长最小,若存在请作出相应图形并写出作法,若不存在,请说明理由。
如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.
已知:如图 △ABC中,AD=AE点D,E在BC上, BD=CE. 求证:AB=AC.
如图, AD∥BC, ∠BAD = 90°,以点B为圆心, BC长为半径画弧, 与射线AD相交于点E,连接BE, 过C点作CF⊥BE, 垂足为F. 线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.
结论: BF = ___________