某公司为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作。经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍。已知某公司现有员工50人,设抽调人到新生产线上工作。
(1)若分工前员工每月的人均产值为元,则分工后留在原生产线上工作的员工每月人均产值是 元,每月的总产值是 元;到新生产线上工作的员工每月人均产值是
元,每月的总产值是 元。
(2)分工后若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值,而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半。
问:抽调的人数应该在什么范围?
如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.
“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出捐款总额的众数;
(3)该班平均每人捐款多少元?
先化简(﹣
)÷
,然后从不等式组
的解集中选取一个你认为合适的整数作为a的值代入求值.
(1)计算:|﹣5|+(π﹣3.1)0﹣+
(2)解方程:+
=1.
如图,已知,在Rt△ABC中,∠BAC=90°.
实践与操作:
(1)①利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法):作线段AC的垂直平分线MN,垂足为O;
②连接BO,并延长BO到点D,使得OD=BO,连接AD、CD;
③分别在OA、OC的延长线上取点E、F,使AE=CF,连接BF、FD、DE、EB.
推理与运用:
(2)①求证:四边形BFDE是平行四边形;
②若AB=4,AC=6,求当AE的长为多少时,四边形BFDE是矩形.