(本题满分14分)
已知函数处取得极值为2.
(Ⅰ)求函数的解析式;
(Ⅱ)若函数在区间
上为增函数,求实数m的取值范围;
(Ⅲ)若图象上的任意一点,直线l与
的图象相切于点P,求直线l的斜率的取值范围.
(本小题满分10分)选修4-l:几何证明选讲在ABC中,D是AB边上一点,
ACD的外接圆交BC于点E,AB= 2BE
(1)求证:BC= 2BD;
(2)若CD平分ACB,且AC =2,EC =1,求BD的长
己知函数,其中
(1)求函数的单调区间;
(2)若直线x-y-l=0是曲线y=的切线,求实数
的值;
(3)设,求g(x)在区间
上的最大值(其中e为自然对数的底数)
设数列满足
(1)求数列的通项公式;
(2)令,求数列
的前n项和
如图,直三棱柱中,D,E分别是AB,
的中点
(1)证明:;
(2)设,求三棱锥
的体积
对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中M,p及图中a的值;
(2)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率