如图,在平面直角坐标系中,已知点坐标为(2,4),直线
与
轴相交于点
,连结
,抛物线
从点
沿
方向平移,与直线
交于点
,顶点
到
点时停止移动.
(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为
,
①用的代数式表示点
的坐标;
②当为何值时,线段
最短;
(3)当线段最短时,相应的抛物线上是否存在点
,使△
的面积与△
的面积相等,若存在,请求出点
的坐标;若不存在,请说明理由.
某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减 |
-5 |
+7 |
-3 |
+4 |
+10 |
-9 |
-25 |
(1)本周三生产了多少辆摩托车?
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
若>0,
<0,
>
,用“<”号连接
,
,
,-
,请结合数轴解答.
已知:,
,且
,求
的值.
如图,点是菱形
的对角线
上一点,连接
并延长,交
于
,交
的延长线于点
.
(1)图中△与哪个三角形全等?并说明理由.
(2)求证:△∽△
.
(3)猜想:线段,
,
之间存在什么关系?并说明理由.
已知关于的一元二次方程
有两个实数根
和
.
(1)求实数的取值范围;
(2)当时,求
的值.