随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如右图所示.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
甲、乙两位同学各有3张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时甲赢得乙一张卡片,否则乙赢得甲一张卡片.规定掷硬币的次数达6次时,或在此前某人已赢得所有卡片时游戏终止。设表示游戏终止时掷硬币的次数。
(1)求第三次掷硬币后甲恰有4张卡片的概率;
(2)求的分布列和数学期望
.
已知数列的前
项和为
,且满足:
,
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和为
.
设函数.
(1)求的最大值;
(2)求的对称中心;
(3)将的图像按向量
平移后得到的图象关于坐标原点对称,求长度最小的
.
已知.
(I)当时,判断
在定义域上的单调性;
(II)若在
(e是自然对数的底)上的最小值为
,求
的值.
如图,顺达驾校拟在长为400m的道路OP的一侧修建一条训练道路,训练道路的前一部分为曲线段OSM,该曲线段为函数的图象,且图象的最高点为
,训练道路的后一部分为折线段MNP,为保证训练安全,限定
.
(I)求曲线段OSM对应函数的解析式;
(II)应如何设计,才能使折线段训练道路MNP最长?最长为多少?