(本小题满分12分) 如图,已知,分别是正方形边、的中点,与交于点,、都垂直于平面,且, ,是线段上一动点.(Ⅰ)求证:平面平面;(Ⅱ)试确定点的位置,使得平面;(Ⅲ)当是中点时,求二面角的余弦值.
如图,,为椭圆:的左、右两个焦点,直线:与椭圆交于两点,,已知椭圆中心点关于的对称点恰好落在的左准线上. ⑴求准线的方程; ⑵已知,,成等差数列,求椭圆的方程.
如图,给出定点和直线,是直线上的动点,的角平分线交于点,求的轨迹方程,并讨论方程表示的曲线类型与值的关系.
已知梯形中,,点分有向线段所成的比为,双曲线过,,三点,且以,为焦点,当时,求双曲线离心率的取值范围.
已知双曲线的离心率,左、右焦点分别为,,左准线为,能否在双曲线的左支上找到一点,使得是到的距离与的等比中项?
求出过定点且与抛物线只有一个公共点的直线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号