某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级2班参加球类活动人数统计表 |
|||||
项目 |
篮球 |
足球 |
乒乓球 |
排球 |
羽毛球 |
人数 |
|
6 |
5 |
7 |
6 |
根据图中提供的信息,解答下列问题:
(1) , ;
(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;
(3)该班参加乒乓球活动的5位同学中,有3位男同学 , , 和2位女同学 ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
如图,已知 , .
求证: .
如图1, 是 的直径, 是 延长线上一点, 切 于点 , 交 于点 ,交 的延长线于点 .
(1)求证: 是等腰三角形;
(2) 于 点,交 于 点,过 点作 ,交 于点 ,交 于 点,连接 ,如图2,若 , ,求 的值.
已知直线 与 轴交于点 ,与 轴交于点 ,且与双曲线 交于点 .
(1)试确定双曲线的函数表达式;
(2)将 沿 轴翻折后,得到 ,画出 的图象,并求出 的函数表达式;
(3)在(2)的条件下,点 是线段 上点(不包括端点),过点 作 轴的平行线,分别交 于点 ,交双曲线于点 ,求 的取值范围.
已知 中, , , , 是边 上一点(不包括端点 、 ,过点 作 于点 ,过点 作 ,交 于点 .设 ,
.
(1)求 与 的函数关系式;
(2)是否存在点 使 是 △?若存在,求此时的 的值;若不存在,请说明理由.