(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面积.
已知抛物线,
(1)若
,
,求该抛物线与
轴公共点的坐标;
(2)若
,且当
时,抛物线与
轴有且只有一个公共点,求
的取值范围;
(3)若
,且
时,对应的
;
时,对应的
,试判断当
时,抛物线与
轴是否有公共点?若有,有几个,证明你的结论;若没有,阐述理由.
已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,
),点T在线段OA上(不与线段端点重合),将纸片沿过T点的直线折叠,使点A落在射线AB上(记为点A′),折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)直接写出∠OAB的度数;
(2)当纸片重叠部分的图形是四边形时,直接写出t的取值范围;
(3)求S关于t的解析式及S的最大值.
如图,⊙O的弦AB∥CD,直径BE平分AD于点G,交弦CD于点H,过点B作BF∥AD交CD延长线于点F.(1)求证:BF与⊙O相切;
(2)求证:DF=DH;
(3)若弦AB=5㎝,AD=8㎝,求⊙O的半径.
学习与探究
(1)请在图1的正方形内,作出使
的所有点
,并简要说明作法.
我们可以这样解决问题:利用直径所对的圆周角等于90°,作以AB为直径的圆,则正方形ABCD内部的半圆上所有点(A、B除外)为所求.
(2)请在图2的正方形内(含边),画出使
的所有的点
,尺规作图,不写作法,保留痕迹;
(3)如图3,已知矩形ABCD中,AB=4,BC=3,请在矩形内(含边),画出的所有的点
,尺规作图,不写作法,保留痕迹.
已知二次函数y=x2-(2a+3)x+4a+2与x轴交于A、B两点,与y轴交于点C,并且点A在点B左侧,位于原点两侧. 若S△ABC的面积为3,求a的值.