问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶
点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:
探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互
不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个
互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种
情况:
一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;
另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.
显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成 个
互不重叠的小三角形,并在图④中画出一种分割示意图.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成 个
互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成
个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成
个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互
不重叠的小三角形?(要求列式计算)
“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将不完整的条形图补充完整.
(3)若居民区有8000人,请估计爱吃D 粽的人数?
(4)若有外型完全相同的A、B、C、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率?
数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:
(1)如图1,若连接矩形ABCD的对角线AC、BD相交于点O,则Rt△ADC可由Rt△ABC经过旋转变换得到,这种旋转变换的旋转中心是点、旋转角度是°;
(2)如图2,将矩形纸片ABCD沿折痕EF对折、展平.再沿折痕GC折叠,使点B落在EF上的点B′处,这样能得到∠B′GC.求∠B′GC的度数.
(3)如图3,取AD边的中点P,剪下△BPC,将△BPC沿着射线BC的方向依次进行平移变换,每次均移动BC的长度,得到了△CDE、△EFG和△GHI(如图4).若BH=BI,BC=a,则:①证明以BD、BF、BH为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于50,请求出a的最大整数值.
如图,已知关于x的二次函数y=x2+mx的图象经过原点O,并且与x轴交于点A,对称轴为直线x=1.
(1)常数m=,点A的坐标为;
(2)若关于x的一元二次方程x2+mx=n(n为常数)有两个不相等的实数根,求n的取值范围;
(3)若关于x的一元二次方程x2+mx-k=0(k为常数)在-2<x<3的范围内有解,求k的取值范围.
甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.
(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;
(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.
(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;
(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)