如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻。有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T。将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好。现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行。(sin37°=0.6,cos37°=0.8)。求:
(1)金属棒与导轨间的动摩擦因数μ
(2)cd离NQ的距离s
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式)。
(8 分).已知地球同步卫星离地面的高度约为地球半径的6倍。若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,求:该行星的自转周期。
如图所示,A是一个质量为1×10-3kg表面绝缘的薄板,薄板静止在光滑的水平面上,在薄板左端放置一质量为1×10-3kg带电量为q=1×10-5C的绝缘物块,在薄板上方有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102V/m的电场,薄板和物块开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102V/m,方向向左,电场作用一段时间后,关闭电场,薄板正好到达目的地,物块刚好到达薄板的最右端,且薄板和物块的速度恰好为零. 已知薄板与物块间的动摩擦因数µ=0.1,(薄板不带电,物块体积大小不计,g取10m/s2)求:
(1)在电场E1作用下物块和薄板的加速度各为多大;
(2)电场E2作用的时间;(3)薄板的长度和薄板移动的距离.
如图所示,真空中水平放置的两个相同极板Y和Y'长为L,相距d,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压U,一束质量为m、带电量为+q的粒子(不计重力)从两板左侧中点A以初速度v0沿水平方向射入电场且能穿出.
(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O点;
(2)求两板间所加偏转电压U的范围;
(3)求粒子可能到达屏上区域的长度.
如图甲所示,电荷量为q=1×10-4C的带正电的小物块置于绝缘水平面上,所在空间存在方向沿水平向右的电场,电场强度E的大小与时间的关系如图乙所示,物块运动速度与时间t的关系如图丙所示,取重力加速度g=10m/s2。求
(1)前2秒内物体加速度的大小;
(2)前4秒内物体的位移 ;
(3)前4秒内电场力做的功。
如图所示,R为电阻箱,V为理想电压表.当电阻箱读数为R1=2 Ω时,电压表读数为U1=4 V;当电阻箱读数为R2=5 Ω时,电压表读数为U2=5 V.求:
(1)电源的电动势E和内阻r;
(2)当电阻箱R读数为多少时,电源的输出功率最大?最大值Pm为多少?