不等式的解集为
,则
.
以椭圆的右焦点F2为圆心作一个圆,使此圆过椭圆的中心,交椭圆于点M、N,若直线MF1(F1为椭圆左焦点)是圆F2的切线,则椭圆的离心率为( )
A.2-![]() |
B.![]() |
C.![]() |
D.![]() |
椭圆+y2=1上一点P到右焦点F的距离为
,则P到左准线的距离为________________.
双曲线C1:-
=1和C2:
-
=-1的离心率分别是e1和e2(a>0,b>0),则e1+e2的最小值是_____________.
过点P(3,4)且与双曲线-
=1只有一个公共点的直线共有______________条.
已知点A(3,2)、F(2,0),在双曲线x2-=1上有一点P,使得|PA|+
|PF|最小,则点P的坐标是_______________.