游客
题文

(本小题满分12分)
已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.
(1)求椭圆的方程;
(2)设直线 与椭圆相交于两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

设函数
(I) 讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.
参考答案

已知函数
(I)若,求处的切线方程;(II)求在区间上的最小值.

甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.

已知直线的极坐标方程为,圆的参数方程为(其中为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆上的点到直线的距离的最小值.

已知函数
(1)求解不等式
(2)若关于的不等式有解,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号