.(满分12分)某射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150米处,这时命中记2分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分。已知射手在100米处击中目标的概率为,他的命中率与目标距离的平方成反比,且各次射击都是独立的。
(1)求这名射手在射击比赛中命中目标的概率;
(2)求这名射手在比赛中得分的数学期望。
、已知向量="(1,2),"
=(-2,1),k,t为正实数,向量
=
+(t
+1)
,
=-k
+
(1)若⊥
,求k的最小值;
(2)是否存在正实数k、t,使∥
?若存在,求出k的取值范围;若不存在,请说明理由.
、已知向量且
>0,设函数
的周期为
,且当
时,函数取最大值2.
(1)、求的解析式,并写出
的对称中心.(2)、当
时,求
的值域
设函数,其中
.
(Ⅰ)若,求
在
上的最小值;
(Ⅱ)如果在定义域内既有极大值又有极小值,求实数
的取值范围;
(Ⅲ)是否存在最小的正整数,使得当
时,不等式
恒成立.
(13分)在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合由全体二元有序实数组组成,在
上定义一个运算,记为
,对于
中的任意两个元素
,
,规定:
.
(1)计算:;
(2)请用数学符号语言表述运算满足交换律,并给出证明;
(3)若“中的元素
”是“对
,都有
成立”的充要条件,试求出元素
.
已知的展开式中,第
项的系数与第
项的系数之比是10:1,求展开式中,
(1)含的项;
(2)系数最大的项.