游客
题文

.(满分12分)某射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150米处,这时命中记2分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分。已知射手在100米处击中目标的概率为,他的命中率与目标距离的平方成反比,且各次射击都是独立的。
(1)求这名射手在射击比赛中命中目标的概率;
(2)求这名射手在比赛中得分的数学期望。

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足,将沿EF折起到的位置,使二面角成直二面角,连结(如图)(I)求证:(Ⅱ)求点B到面的距离(Ⅲ)求异面直线BP与所成角的余弦

甲、乙、丙3人投篮,投进的概率分别是.
(Ⅰ)现3人各投篮1次,分别求3人都没有投进和3人中恰有2人投进的概率.
(Ⅱ)用ξ表示乙投篮4次的进球数,求随机变量ξ的概率分布及数学期望Eξ.

中,角的对边分别为.(I)求;(II)若,且,求

已知M、N两点的坐标分别是是常数,令是坐标原点
(Ⅰ)求函数的解析式,并求函数上的单调递增区间;
(Ⅱ)当时,的最大值为,求a的值,并说明此时的图象可由函数的图象经过怎样的平移和伸缩变换而得到?

已知函数
(1)求的最大值及最小正周期;
(2)求使的x的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号