游客
题文

在直角坐标系中,我们把横、纵坐标都为整数的点叫作整点.设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动,运动时间(s)与整点(个)的关系如下表:

整点P从原点O出发
的时间(s)
可以得到整点P的坐标
可以得到整点
P的个数
1
(0,1),(1,0)
2
2
(0,2),(1,1),(2,0)
3
3
(0,3)(1,2)(2,1)(3,0)
4



根据上表中的规律,回答下列问题:
⑴当整点P从点O出发4s时可得到的整点P有   个;
⑵当整点P从点O出发8s时,在直角坐标系中描出可以得到的整点,并顺次连接这些整点;
⑶当整点P从点O出发     s时,可以到达整点(16,4)的位置;
⑷当整点P(x,y)从点O出发30s时,当整点P(x,y)恰好在直线y=2x-6上,求整点P的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 计算器—基础知识
登录免费查看答案和解析
相关试题

已知方程的一个根是3,求m的值及方程的另一个根.

解方程:(+4)2=5(+4).

(本小题满分10分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA—AD—DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD—DA—AB于点E.点P,Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).

(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC?
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD,DA上时,S与t的函数关系式;(不必写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.

(本小题满分8分)已知:在平面直角坐标系xOy中,给出如下定义:线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).

(1)如图l,已知C点的坐标为(1,0),D点的坐标为(3,0),求点P(2,1)到线段CD的距离d(P→CD)为____;
(2)已知:线段EF:y=x(0≤x≤3),点G到线段时的距离d(P→EF)为,且点G的横坐标为l,在图2中画出图,试求点G的纵坐标.

(本小题满分10分)
某市的重大惠民工程——公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间菇的关系是y=-x+(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:

z(元/m2
50
52
54
56
58

x(年)
1
2
3
4
5


(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:≈17.7,≈17.8,≈17.9)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号