(本小题满分14分)如图所示,直线与x轴、y轴分别交于A、B两点,抛物线
经过A、B两点,与x轴的另一个交点为C,连接BC.
(1)求抛物线的解析式及点C的坐标;
(2)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,求出点D的坐标;若不存在,说明理由.
化简;
化简
化简
如图1,在正方形ABCD中,等腰三角形AEF的顶点E,F分别在BC和CD上.
(1)求证:BE=DF;
(2)若等腰三角形AEF的腰AE比正方形ABCD的边AB长1,BE=5,求正方形ABCD的面积;
(3)若∠EAF=50°,则
①如图1,∠BAE=°;
②如图2,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,求∠BAE的大小.
如图,在矩形ABCD中,AC与BD相交于O,∠COD=60°,点E是BC边上的动点,连结DE,OE.
(1)求证:△COD是等边三角形;
(2)如图1,当DE平分∠ADC时,试证明OC=EC,并求出∠DOE的度数;
(3)如图2,当DE平分∠BDC时,试证明.