在平面直角坐标系中的位置如图
⑴通过列表、描点画出直线的图象;
⑵作关于直线
对称的图形
,并写出
各顶点的坐标;
⑶若点(
,
)是
内部一点,则其变换后的对称点
的坐标为 .
已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.
如图(1),在矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,如图(2)以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t>0).
(1)如图(3),当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)如图(4),当等边△EFG的顶点G恰好落在CD边上时,求运动时间t的值;
(3)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请求出S与t之间的函数关系式,并写出相应的自变量的取值范围.
如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2-GB2=DF•GF.
如图抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C(0,-3),顶点D坐标为(-1,-4).
(1)求抛物线的解析式;
(2)如题图(1),求点A、B的坐标,并直接写出不等式ax2+bx+c>0的解集;
(3)如题图(2),连接BD、AD,点P为线段AB上一动点,过点P作直线PQ∥BD交线段AD于点Q,求△PQD面积的最大值.
我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.
组别 |
成绩 |
组中值 |
频数 |
第一组 |
90≤x<100 |
95 |
4 |
第二组 |
80≤x<90 |
85 |
m |
第三组 |
70≤x<80 |
75 |
n |
第四组 |
60≤x<70 |
65 |
21 |
根据图表信息,回答下列问题:
(1)参加活动选拔的学生共有 人;表中m= ,n= ;
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.