短跑名将博尔特在北京奥运会上创造了100 m和200 m短跑项目的新世界纪录,他的成绩分别是9.69 s和19.30 s.假定他在100 m比赛时从发令到起跑的反应时间是0.15 s,起跑后做匀加速运动,达到最大速率后做匀速运动.200 m比赛时,反应时间及起跑后加速阶段的加速度和加速时间与100 m比赛时相同,但由于弯道和体力等因素的影响,以后的平均速率只有跑100 m时最大速率的96%.求:
(1)加速所用时间和达到的最大速率;
(2)起跑后做匀加速运动的加速度.(结果保留两位小数)
如图所示,长为L=50cm且粗细均匀的细玻璃管开口向上竖直放置,玻璃管内用10cm高的水银柱封闭着30cm长的空气柱(可看作理想气体),其初始温度为t0=27℃,外界大气压强恒为p0=76cmHg。
①若缓慢对空气柱加热,使水银柱上表面与管口刚好相平,求此时空气柱的温度t1;
②若将玻璃管的上端开口封闭,并将下端空气柱的温度升高到t2=327℃,发现玻璃管中的水银柱上升了2cm,则此时下端空气柱的压强为多大?
如图所示,两块平行金属极板MN水平放置,板长L=1 m.间距d= m,两金属板间电压UMN=1×104 V;在平行金属板右侧依次存在ABC和FGH两个全等的正三角形区域,正三角形ABC内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板M平齐,BC边与金属板平行,AB边的中点P恰好在下金属板N的右端点;正三角形FGH内存在垂直纸面向外的匀强磁场B2.已知A、F、G处于同一直线上,B、C、H也处于同一直线上.AF两点的距离为
m.现从平行金属板MN左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m=3×10-10 kg,带电荷量q=+1×10-4 C,初速度v0=1×105 m/s.
(1)求带电粒子从电场中射出时的速度v的大小和方向;
(2)若带电粒子进入中间三角形区域后垂直打在AC边上,求该区域的磁感应强度B1;
(3)若要使带电粒子由FH边界进入FGH区域并能再次回到FH界面,求B2应满足的条件.
我国不少省市ETC联网正式启动运行,ETC是电子不停车收费系统的简称.汽车分别通过ETC通道和人工收费通道的流程如图所示.假设汽车以正常行驶速度v1=16 m/s朝收费站沿直线行驶,如果过ETC通道,需要在距收费站中心线前d=8 m处正好匀减速至v2=4 m/s,匀速通过中心线后,再匀加速至v1正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过t0=25 s缴费成功后,再启动汽车匀加速至v1正常行驶.设汽车在减速和加速过程中的加速度大小分别为a1=2 m/s2、a2=1 m/s2.求:
(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;
(2)汽车通过ETC通道比通过人工收费通道速度再达到v1时节约的时间Δt是多少?
如图所示,光滑平台上有两个刚性小球A和B,质量分别为2m和3m,小球A以速度v0向右运动并与静止的小球B发生碰撞(碰撞过程不损失机械能),小球B飞出平台后经时间t刚好掉入装有沙子水平向左运动的小车中,小车与沙子的总质量为m,速度为2v0,小车行驶的路面是光滑的水平面,求:
①碰撞后小球A和小球B的速度大小;
②小球B掉入小车后的速度大小。
如图所示,在桌面上方有一倒立的玻璃圆锥,顶角∠AOB=120°,顶点O与桌面的距离为4a,圆锥的底面半径R=a,圆锥轴线与桌面垂直,有一半径为R的圆柱形平行光垂直入射到圆锥的底面上,光束的中心轴与圆锥的轴重合.已知玻璃的折射率n=
,求光束在桌面上形成的光斑的面积.