某研究性学习小组,为了了解本校九年级学生一天中做家庭作业所用的大致时间(时间以整数记.单位:分钟),对该年级学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),请结合统计图中提供的信息,回答下列问题:
(1)这个研究性学习小组所抽取样本的容量是多少?
(2)在被调查的学生中,一天做家庭作业所用的大致时间超过150分钟(不包括150分钟)的人数占被调查学生总人数的百分之几?
(3)如果该校九年级学生共有200名,那么估计该校九年级学生一天做家庭作业所用时间不超过120分钟的学生约有多少人?
已知直线 上点 ,过点 作 轴交 轴于点 ,交双曲线 于点 ,过点 作 轴交 轴于点 ,交双曲线 于点 ,若 是 的中点,且四边形 的面积为 .
(1)求 的值;
(2)若 是双曲线 第一象限上的任一点,求证: 为常数6;
(3)现在双曲线 上选一处 建一座码头,向 两地转运货物,经测算,从 到 ,从 到 修建公路的费用都是每单位长度 万元,则码头 应建在何处,才能使修建两条公路的总费用最低?(提示:利用(2)的结论转化)
如图,点 为 轴负半轴上的一个点,过点 作 轴的垂线,交函数 的图象于点 ,交函数 的图象于点 ,过点 作 轴的平行线,交 于点 ,连接 .
(1)当点 的坐标为 时,求 的面积;
(2)若 ,求点 的坐标;
(3)连接 和 .当点 的坐标为 时, 的面积是否随 的值的变化而变化?请说明理由.
如图,在矩形 中,已知 是边 上的一个动点(不与点 重合),过 点的反比例函数 的图象与 边交于点 .
(1)求证: 与 的面积相等;
(2)记 ,求当 为何值时, 有最大值,最大值为多少?
如图,在平面直角坐标系中。已知四边形 为菱形,且 .
(1)求过点 的反比例函数解析式;
(2)设直线 与(1)中所求函数图象相切,且与 轴, 轴的交点分别为 为坐标原点.求证: 的面积为定值.
如图, 中, ,边 在 轴上,反比例函数 的图象经过斜边 的中点 ,与 相交于点N, .
(1)求 的值;
(2)求直线 的解析式.