图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.
(1)连接CD,EB,猜想它们的位置关系并加以证明;
(2)求A,B两点之间的距离(结果取整数,可以使用计算器)
(参考数据:≈1.41,
≈1.73,
≈2.45)
某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:
某校初中生阅读数学教科书情况统计图表
类别 |
人数 |
占总人数比例 |
重视 |
a |
0.3 |
一般 |
57 |
0.38 |
不重视 |
b |
c |
说不清楚 |
9 |
0.06 |
(1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;
(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;
②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.
有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.
(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)
(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.
①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?
②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.
已知梯形ABCD,请使用无刻度直尺画图.
(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;
(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.