求使≤
(x>0,y>0)恒成立的
的最小值
设角是
的三个内角,已知向量
,
,且
.
(Ⅰ)求角的大小; (Ⅱ)若向量
,试求
的取值范围
设椭圆的离心率
,右焦点到直线
的距离
O为坐标原点。
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明: 点O到直线AB的距离为定值,并求弦AB长度的最小值。
已知函数是
的导函数。
(I)当a=2时,对于任意的的最小值;
(II)若存在,使
求a的取值范围。
如图,已知直三棱柱ABC—A1B1C1,。E、F分别是棱CC1、AB中点。
(1)求证:;
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。
设数列{an}的前n项和为Sn,
(I)求证: 数列{an}是等差数列;
(II)设数列的前n项和为Tn,求Tn.