已知:,化简
再求值.
(1)如图,已知 , 为边 上一点,请用尺规作图的方法在边 上求作一点 ,使 .(保留作图痕迹,不写作法)
(2)在图中,如果 , ,则 的周长是 .
如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 , ,动点 以每秒1个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 秒.
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.
“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具 件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
已知 、 两地相距 ,一辆货车从 前往 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从 地前往 地,到达 地后(在 地停留时间不计)立即原路原速返回.如图是两车距 地的距离 与货车行驶时间 之间的函数图象,结合图象回答下列问题:
(1)图中 的值是 ;轿车的速度是 ;
(2)求货车从 地前往 地的过程中,货车距 地的距离 与行驶时间 之间的函数关系式;
(3)直接写出轿车从 地到 地行驶过程中,轿车出发多长时间与货车相距 ?