游客
题文

如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=

(1)求过A、C、D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

解方程(每题4分,共8分)
(1)(2)-

先化简,再求值(每题4分,共8分)
(1),其中m=-1,n=2
(2),其中

探索性问题:
已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题:
(1)请直接写出a、b、c的值.a= ,b= ,c=
(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.
①t秒钟过后,AC的长度为 (用t的关系式表示);
②请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按2元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按2元/立方米收费,超过部分按2.6元/立方米计费.
(1)如果小红家每月用水15吨,水费是 元,如果每月用水23吨,水费是
(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费如何用x代数式表示.
(3)如果小明家第二季度交纳水费的情况如下:

月份
四月份
五月份
六月份
交费金额
30元
34元
47.8元


小明家这个季度共用水多少立方米?

(1)在下列横线上用含有a,b的代数式表示相应图形的面积.

(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示
(3)利用(2)的结论计算9972+6×997+9的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号