用分析法证明:.
如图,在长方体,中,
,点
在棱AB上移动.
(Ⅰ)证明:;
(Ⅱ)当为
的中点时,求点
到面
的距离;
(Ⅲ)等于何值时,二面角
的大小为
.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.(精确到1辆/小时).
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为
,
(
>
),且三位学生是否做对相互独立.记
为这三位学生中做对该题的人数,其分布列为:
![]() |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求至少有一位学生做对该题的概率;
(Ⅱ)求,
的值;
(Ⅲ)求的数学期望.
已知向量=(
,
),
=(1,
),且
=
,其中
、
、
分别为
的三边
、
、
所对的角.
(Ⅰ)求角的大小;
(Ⅱ)若,且
,求边
的长.
已知,函数
(1)求曲线在点
处的切线方程; (2)当
时,求
的最大值.