一个口袋中装有大小相同的2个白球和3个黑球。
(Ⅰ)从中摸出两个球,求两球恰好颜色不同的概率;
(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率。
已知等差数列(n∈N*),它的前n项和为
,且
求数列
的前n项和的最小值.
已知a,b>0,且a+b=1,求:
(Ⅰ)+
的最小值;
(Ⅱ)+
+
的最小值.
设函数f(x)=(ax2-2x)•ex,其中a≥0.
(1)当a=时,求f(x)的极值点;
(2)若f(x)在[-1,1]上为单调函数,求a的取值范围.
已知函数f(x)=|2x+1|-|x-3|.
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)若存在x使得f(x)+a≤0成立,求实数a的取值范围.
双曲线C与椭圆+
=1有相同焦点,且经过点(4,
).
(1)求双曲线的方程;
(2)若F1,F2是双曲线C的两个焦点,点P在双曲线C上,且∠F1PF2=60°,求△F1PF2的面积.